Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585925

RESUMO

Repetitive head impacts (RHI) sustained from contact sports are the largest risk factor for chronic traumatic encephalopathy (CTE). Currently, CTE can only be diagnosed after death and the multicellular cascade of events that trigger initial hyperphosphorylated tau (p-tau) deposition remain unclear. Further, the symptoms endorsed by young individuals with early disease are not fully explained by the extent of p-tau deposition, severely hampering development of therapeutic interventions. Here, we show that RHI exposure associates with a multicellular response in young individuals (<51 years old) prior to the onset of CTE p-tau pathology that correlates with number of years of RHI exposure. Leveraging single nucleus RNA sequencing of tissue from 8 control, 9 RHI-exposed, and 11 low stage CTE individuals, we identify SPP1+ inflammatory microglia, angiogenic and inflamed endothelial cell profiles, reactive astrocytes, and altered synaptic gene expression in excitatory and inhibitory neurons in all individuals with exposure to RHI. Surprisingly, we also observe a significant loss of cortical sulcus layer 2/3 neurons in contact sport athletes compared to controls independent of p-tau pathology. These results provide robust evidence that multiple years of RHI exposure is sufficient to induce lasting cellular alterations that may underlie p-tau deposition and help explain the early clinical symptoms observed in young former contact sport athletes. Furthermore, these data identify specific cellular responses to repetitive head impacts that may direct future identification of diagnostic and therapeutic strategies for CTE.

2.
Acta Neuropathol Commun ; 11(1): 161, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803326

RESUMO

Astrocytic tau aggregates are seen in several primary and secondary tauopathies, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and chronic traumatic encephalopathy (CTE). In all of these diseases, astrocytic tau consists mostly of the longer (4R) tau isoform, even when adjacent neuronal aggregates consist of a mixture of 3- and 4R tau, as in CTE. Even the rare astrocytic tau aggregates seen in Pick's disease appear to contain both 3R and 4R tau. The reasons for this, and the mechanisms by which astrocytic tau aggregates form, remain unclear. We used a combination of RNA in situ hybridization and immunofluorescence in post-mortem human brain tissue, as well as tau uptake studies in human stem cell-derived astrocytes, to determine the origins of astrocytic tau in 4R tauopathies. We found no differences in tau mRNA expression between diseases or between tau positive and negative astrocytes within PSP. We then found that stem cell-derived astrocytes preferentially take up long isoform (4R) recombinant tau and that this uptake is impaired by induction of reactivity with inflammatory stimuli or nutritional stress. Astrocytes exposed to either 3R or 4R tau also showed downregulation of genes related to astrocyte differentiation. Our findings suggest that astrocytes preferentially take up neuronal 4R tau from the extracellular space, potentially explaining why 4R tau is the predominant isoform in astrocytic tau aggregates.


Assuntos
Encefalopatia Traumática Crônica , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Astrócitos/metabolismo , Tauopatias/patologia , Paralisia Supranuclear Progressiva/patologia , Encéfalo/patologia , Encefalopatia Traumática Crônica/patologia , Isoformas de Proteínas/metabolismo
3.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790527

RESUMO

Activity-induced gene expression underlies synaptic plasticity and brain function. Here, using molecular sequencing techniques, we define activity-dependent transcriptomic and epigenomic changes at the tissue and single-cell level in the human brain following direct electrical stimulation of the anterior temporal lobe in patients undergoing neurosurgery. Genes related to transcriptional regulation and microglia-specific cytokine activity displayed the greatest induction pattern, revealing a precise molecular signature of neuronal activation in the human brain.

4.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546981

RESUMO

Astrocytic tau aggregates are seen in several primary and secondary tauopathies, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and chronic traumatic encephalopathy (CTE). In all cases, astrocytic tau consists exclusively of the longer (4R) tau isoform, even when adjacent neuronal aggregates consist of a mixture of 3- and 4R tau, as in CTE. The reasons for this and the mechanisms by which astrocytic tau aggregates form remain unclear. We used a combination of RNA in situ hybridization and immunofluorescence in post-mortem human brain tissue, as well as tau uptake studies in human stem cell-derived astrocytes, to determine the origins of astrocytic tau in 4R tauopathies. We found that astrocytes across tauopathies do not upregulate tau mRNA expression between diseases or between tau-positive and -negative astrocytes within PSP. We then found that stem cell-derived astrocytes preferentially take up long isoform (4R) labeled recombinant tau and that this uptake is impaired by induction of reactivity with inflammatory stimuli or nutritional stress. Astrocytes exposed to either 3R or 4R tau also showed downregulation of genes related to astrocyte differentiation. Our findings suggest that astrocytes preferentially take up neuronal 4R tau from the extracellular space, which potentially explains why astrocytic tau aggregates contain only 4R tau, and that tau uptake is impaired by decreased nutrient availability or neuroinflammation, both of which are common in the aging brain.

5.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398335

RESUMO

Social interaction is a core component of motivational behavior that is perturbed across multiple neuropsychiatric disorders, including alcohol use disorder (AUD). Positive social bonds are neuroprotective and enhance recovery from stress, so reduced social interaction in AUD may delay recovery and lead to alcohol relapse. We report that chronic intermittent ethanol (CIE) induces social avoidance in a sex-dependent manner and is associated with hyperactivity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN). While 5-HT DRN neurons are generally thought to enhance social behavior, recent evidence suggests that specific 5-HT pathways can be aversive. Using chemogenetic iDISCO, the nucleus accumbens (NAcc) was identified as one of 5 regions that were activated by 5-HT DRN stimulation. We then employed an array of molecular genetic tools in transgenic mice to show that 5-HT DRN inputs to NAcc dynorphin neurons drive social avoidance in male mice after CIE by activating 5-HT 2C receptors. NAcc dynorphin neurons also inhibit dopamine release during social interaction, reducing the motivational drive to engage with social partners. This study reveals that excessive serotonergic drive after chronic alcohol can promote social aversion by inhibiting accumbal dopamine release. Drugs that boost brain serotonin levels may be contraindicated for individuals with AUD.

6.
J Histochem Cytochem ; 71(2): 73-86, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36861683

RESUMO

Tau phosphorylation, aggregation, and toxicity are the main drivers of neurodegeneration in multiple tauopathies, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau. Although aggregation and amyloid formation are often assumed to be synonymous, the ability of tau aggregates in different diseases to form amyloids in vivo has not been systematically studied. We used the amyloid dye Thioflavin S to look at tau aggregates in mixed tauopathies such as AD and primary age-related tauopathy, as well as pure 3R or 4R tauopathies such as Pick's disease, progressive supranuclear palsy, and corticobasal degeneration. We found that aggregates of tau protein only form thioflavin-positive amyloids in mixed (3R/4R), but not pure (3R or 4R), tauopathies. Interestingly, neither astrocytic nor neuronal tau pathology was thioflavin-positive in pure tauopathies. As most current positron emission tomography tracers are based on thioflavin derivatives, this suggests that they may be more useful for differential diagnosis than the identification of a general tauopathy. Our findings also suggest that thioflavin staining may have utility as an alternative to traditional antibody staining for distinguishing between tau aggregates in patients with multiple pathologies and that the mechanisms for tau toxicity may differ between different tauopathies.


Assuntos
Doença de Alzheimer , Doença de Pick , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Encéfalo/patologia , Neurônios/metabolismo , Doença de Pick/metabolismo , Doença de Pick/patologia , Paralisia Supranuclear Progressiva/patologia , Tauopatias/diagnóstico , Tauopatias/patologia
7.
eNeuro ; 10(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36898832

RESUMO

Despite exhibiting tau phosphorylation similar to Alzheimer's disease (AD), the human fetal brain is remarkably resilient to tau aggregation and toxicity. To identify potential mechanisms for this resilience, we used co-immunoprecipitation (co-IP) with mass spectrometry to characterize the tau interactome in human fetal, adult, and Alzheimer's disease brains. We found significant differences between the tau interactome in fetal and AD brain tissue, with little difference between adult and AD, although these findings are limited by the low throughput and small sample size of these experiments. Differentially interacting proteins were enriched for 14-3-3 domains, and we found that the 14-3-3-ß, η, and γ isoforms interacted with phosphorylated tau in Alzheimer's disease but not the fetal brain. Since long isoform (4R) tau is only seen in the adult brain and this is one of the major differences between fetal and AD tau, we tested the ability of our strongest hit (14-3-3-ß) to interact with 3R and 4R tau using co-immunoprecipitation, mass photometry, and nuclear magnetic resonance (NMR). We found that 14-3-3-ß interacts preferentially with phosphorylated 4R tau, forming a complex consisting of two 14-3-3-ß molecules to one tau. By NMR, we mapped 14-3-3 binding regions on tau that span the second microtubule binding repeat, which is unique to 4R tau. Our findings suggest that there are isoform-driven differences between the phospho-tau interactome in fetal and Alzheimer's disease brain, including differences in interaction with the critical 14-3-3 family of protein chaperones, which may explain, in part, the resilience of fetal brain to tau toxicity.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Proteínas 14-3-3/metabolismo , Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo
8.
J Neurosci ; 43(2): 221-239, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36442999

RESUMO

Lesion localization is the basis for understanding neurologic disease, which is predicated on neuroanatomical knowledge carefully cataloged from histology and imaging atlases. However, it is often difficult to correlate clinical images of brainstem injury obtained by MRI scans with the details of human brainstem neuroanatomy represented in atlases, which are mostly based on cytoarchitecture using Nissl stain or a single histochemical stain, and usually do not include the cerebellum. Here, we report a high-resolution (200 µm) 7T MRI of a cadaveric male human brainstem and cerebellum paired with detailed, coregistered histology (at 2 µm single-cell resolution) of the immunohistochemically stained cholinergic, serotonergic, and catecholaminergic (dopaminergic, noradrenergic, and adrenergic) neurons, in relationship to each other and to the cerebellum. These immunohistochemical findings provide novel insights into the spatial relationships of brainstem cell types and nuclei, including subpopulations of melanin and TH+ neurons, and allows for more informed structural annotation of cell groups. Moreover, the coregistered MRI-paired histology helps validate imaging findings. This is useful for interpreting both scans and histology, and to understand the cell types affected by lesions. Our detailed chemoarchitecture and cytoarchitecture with corresponding high-resolution MRI builds on previous atlases of the human brainstem and cerebellum, and makes precise identification of brainstem and cerebellar cell groups involved in clinical lesions accessible for both laboratory scientists and clinicians alike.SIGNIFICANCE STATEMENT Clinicians and neuroscientists frequently use cross-sectional anatomy of the human brainstem from MRI scans for both clinical and laboratory investigations, but they must rely on brain atlases to neuroanatomical structures. Such atlases generally lack both detail of brainstem chemical cell types, and the cerebellum, which provides an important spatial reference. Our current atlas maps the distribution of key brainstem cell types (cholinergic, serotonergic, and catecholaminergic neurons) in relationship to each other and the cerebellum, and pairs this histology with 7T MR images from the identical brain. This atlas allows correlation of the chemoarchitecture with corresponding MRI, and makes the identification of cell groups that are often discussed, but rarely identifiable on MRI scan, accessible to clinicians and clinical researchers.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Humanos , Masculino , Tronco Encefálico/diagnóstico por imagem , Encéfalo/metabolismo , Neurônios
9.
Mol Cell Biochem ; 478(6): 1231-1244, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36282352

RESUMO

Sodium fluoroacetate (FA) is a metabolic poison that systemically inhibits the tricarboxylic acid (TCA) cycle, causing energy deficiency and ultimately multi-organ failure. It poses a significant threat to society because of its high toxicity, potential use as a chemical weapon and lack of effective antidotal therapy. In this study, we investigated cell-permeable succinate prodrugs as potential treatment for acute FA intoxication. We hypothesized that succinate prodrugs would bypass FA-induced mitochondrial dysfunction, provide metabolic support, and prevent metabolic crisis during acute FA intoxication. To test this hypothesis, rats were exposed to FA (0.75 mg/kg) and treated with the succinate prodrug candidate NV354. Treatment efficacy was evaluated based on cardiac and cerebral mitochondrial respiration, mitochondrial content, metabolic profiles and tissue pathology. In the heart, FA increased concentrations of the TCA metabolite citrate (+ 4.2-fold, p < 0.01) and lowered ATP levels (- 1.9-fold, p < 0.001), confirming the inhibition of the TCA cycle by FA. High-resolution respirometry of cardiac mitochondria further revealed an impairment of mitochondrial complex V (CV)-linked metabolism, as evident by a reduced phosphorylation system control ratio (- 41%, p < 0.05). The inhibition of CV-linked metabolism is a novel mechanism of FA cardiac toxicity, which has implications for drug development and which NV354 was unable to counteract at the given dose. In the brain, FA induced the accumulation of ß-hydroxybutyrate (+ 1.4-fold, p < 0.05) and the reduction of mitochondrial complex I (CI)-linked oxidative phosphorylation (OXPHOSCI) (- 20%, p < 0.01), the latter of which was successfully alleviated by NV354. This promising effect of NV354 warrants further investigations to determine its potential neuroprotective effects.


Assuntos
Pró-Fármacos , Ratos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/metabolismo , Ácido Succínico/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Complexo I de Transporte de Elétrons/metabolismo , Fluoracetatos/farmacologia , Fluoracetatos/metabolismo
10.
Psychiatry Clin Neurosci ; 77(1): 48-55, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36266784

RESUMO

AIMS: There is no previous study demonstrating the differences of genome-wide DNA methylation (DNAm) profiles between patients with and without postoperative delirium (POD). We aimed to discover epigenetic (DNAm) markers that are associated with POD in blood obtained from patients before and after neurosurgery. METHODS: Pre- and post-surgical blood DNA samples from 37 patients, including 10 POD cases, were analyzed using the Illumina EPIC array genome-wide platform. We examined DNAm differences in blood from patients with and without POD. Enrichment analysis with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes terms were also conducted. RESULTS: When POD cases were tested for DNAm change before and after surgery, enrichment analyses showed many relevant signals with statistical significance in immune response related-pathways and inflammatory cytokine related-pathways such as "cellular response to cytokine stimulus", "regulation of immune system process", "regulation of cell activation", and "regulation of cytokine production". Furthermore, after excluding the potential effect of common factors related to surgery and anesthesia between POD cases and non-POD controls, the enrichment analyses showed significant signals such as "immune response" and "T cell activation", which are same pathways previously identified from an independent non-surgical inpatient cohort. CONCLUSIONS: Our first genome-wide DNAm investigation of POD showed promising signals related to immune response, inflammatory response and other relevant signals considered to be associated with delirium pathophysiology. Our data supports the hypothesis that epigenetics play an important role in the pathophysiological mechanism of delirium and suggest the potential usefulness of an epigenetics-based biomarker of POD.


Assuntos
Delírio do Despertar , Neurocirurgia , Humanos , Metilação de DNA , Epigênese Genética , Biomarcadores
11.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768006

RESUMO

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Assuntos
COVID-19 , Influenza Humana , Neoplasias , Animais , Humanos , Influenza Humana/patologia , Camundongos , Microglia/patologia , Bainha de Mielina , Neoplasias/patologia , SARS-CoV-2
13.
Environ Sci Technol ; 56(13): 9515-9526, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35658127

RESUMO

Exposure to polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) has been implicated in neurodevelopmental disorders. However, the distribution of PCBs and OH-PCBs in the human brain has not been characterized. This study investigated the age-, sex-, and brain region-specific distribution of all 209 PCBs using gaschromatography-tandem mass spectrometry (GC-MS/MS) in neonatal (N = 7) and adult (N = 7) postmortem brain samples. OH-PCB analyses were performed by GC-MS/MS (as methylated derivatives) and, in a subset of samples, by nontarget liquid chromatography high-resolution mass spectrometry (Nt-LCMS). Fourteen higher chlorinated PCB congeners were observed with a detection frequency >50%. Six lower chlorinated PCBs were detected with a detection frequency >10%. Higher chlorinated PCBs were observed with higher levels in samples from adult versus younger donors. PCB congener profiles from adult donors showed more similarities across brain regions and donors than younger donors. We also assess the potential neurotoxicity of the PCB residues in the human brain with neurotoxic equivalency (NEQ) approaches. The median ΣNEQs, calculated for the PCB homologues, were 40-fold higher in older versus younger donors. Importantly, lower chlorinated PCBs made considerable contributions to the neurotoxic potential of PCB residues in some donors. OH-PCBs were identified for the first time in a small number of human brain samples by GC-MS/MS and Nt-LCMS analyses, and all contained four or fewer chlorine.


Assuntos
Bifenilos Policlorados , Adulto , Idoso , Encéfalo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Hidroxilação , Recém-Nascido , Bifenilos Policlorados/análise , Espectrometria de Massas em Tandem
14.
Neurotrauma Rep ; 3(1): 178-184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558731

RESUMO

Transcriptomic investigations of traumatic brain injury (TBI) can give us deep insights into the pathological and compensatory processes post-injury. Thus far, transcriptomic studies in TBI have mostly used microarrays and have focused on rodent models. However, a large animal model of TBI bears a much stronger resemblance to human TBI with regard to the anatomical details, mechanics of injury, genetics, and, possibly, molecular response. Because of the advantages of a large animal TBI model, we investigated the gene expression changes between injured and uninjured sides of pig cerebral cortex after TBI. Given acute inflammation that follows after TBI and the important role that immune response plays in neuroplasticity and recovery, we hypothesized that transcriptional changes involving immune function will be upregulated. Eight female 4-week-old piglets were injured on the right hemisphere with controlled cortical impact (CCI). At 24 h after TBI, pericontusional cortex tissues from the injured side and contralateral cortical tissues were collected. After RNA extraction, library preparation and sequencing as well as gene expression changes between the ipsi- and contralateral sides were compared. There were 6642 genes that were differentially expressed between the ipsi- and contralateral sides, and 1993 genes among them had at least 3-fold differences. Differentially expressed genes were enriched for biological processes related to immune system activation, regulation of immune response, and leukocyte activation. Many of the differentially expressed genes, such as CD4, CD86, IL1A, IL23R, and IL1R1, were major regulators of immune function. This study demonstrated some of the major transcriptional changes between the pericontusional and contralateral tissue at an acute time point after TBI in pigs.

15.
Indian J Pathol Microbiol ; 65(Supplement): S146-S152, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35562145

RESUMO

The COVID-19 pandemic has placed global health care systems under unprecedented strain but has, at the same time, provided a unique opportunity for pathologists to turn autopsy findings into directly actionable insights into patient care. The current data on the neuropathology of COVID-19 remains preliminary and is limited by the lack of suitable controls, but certain tentative conclusions can be drawn. SARS-CoV-2 can infect multiple cell types in the central nervous system and does so in a subset of patients, although the clinical significance of direct infections remains in the central nervous system (CNS) and the peripheral nervous system (PNS) infections remains unclear. The best-described neuropathological manifestations of COVID-19 in the brain are variable patterns of neuroinflammation and vascular injury, although again, it remains unclear to what degree these findings are specifically due to COVID-19. There is also intriguing preliminary data to suggest a complex relationship between COVID-19 and neurodegeneration, with certain alleles that increase AD risk also increasing the risk of severe COVID-19, and conversely, the possibility that COVID-19 may increase the risk of neurodegenerative disease. The neuropathology of so-called "long-COVID" and the potential effects of COVID-19, or critical illness in general, on neurodegenerative disease remains unclear. There is thus an urgent need for long-term cohort studies of COVID-19 survivors, including brain donation, particularly in elderly patients, with careful recruitment of controls with similar non-COVID inflammatory illnesses.


Assuntos
COVID-19 , Doenças Neurodegenerativas , Idoso , Encéfalo/patologia , Humanos , Doenças Neurodegenerativas/patologia , Pandemias , SARS-CoV-2
16.
Resusc Plus ; 10: 100243, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35592874

RESUMO

Objective: The effect of cardiac arrest (CA) on cerebral transcriptomics and metabolomics is unknown. We previously demonstrated hemodynamic-directed CPR (HD-CPR) improves survival with favorable neurologic outcomes versus standard CPR (Std-CPR). We hypothesized HD-CPR would preserve the cerebral transcriptome and metabolome compared to Std-CPR. Design: Randomized pre-clinical animal trial. Setting: Large animal resuscitation laboratory at an academic children's hospital. Subjects: Four-week-old female piglets (8-11 kg). Interventions: Pigs (1-month-old), three groups: 1) HD-CPR (compression depth to systolic BP 90 mmHg, vasopressors to coronary perfusion pressure 20 mmHg); 2) Std-CPR and 3) shams (no CPR). HD-CPR and Std-CPR underwent asphyxia, induced ventricular fibrillation, 10-20 min of CPR and post-resuscitation care. Primary outcomes at 24 h in cerebral cortex: 1) transcriptomic analysis (n = 4 per treatment arm, n = 8 sham) of 1727 genes using differential gene expression and 2) metabolomic analysis (n = 5 per group) of 27 metabolites using one-way ANOVA, post-hoc Tukey HSD. Measurements and main results: 65 genes were differentially expressed between HD-CPR and Std-CPR and 72 genes between Std-CPR and sham, but only five differed between HD-CPR and sham. Std-CPR increased the concentration of five AA compared to HD-CPR and sham, including the branched chain amino acids (BCAA), but zero metabolites differed between HD-CPR and sham. Conclusions: In cerebral cortex 24 h post CA, Std-CPR resulted in a different transcriptome and metabolome compared with either HD-CPR or sham. HD-CPR preserves the transcriptome and metabolome, and is neuroprotective. Global molecular analyses may be a novel method to assess efficacy of clinical interventions and identify therapeutic targets. Institutional protocol number: IAC 16-001023.

17.
J Neurotrauma ; 39(13-14): 935-943, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35369719

RESUMO

To establish the clinical relevance of porcine model of traumatic brain injury (TBI) using the plasma biomarkers of injury with diffusion tensor imaging (DTI) over 30 days, we performed a randomized, blinded, pre-clinical trial using Yorkshire pigs weighing 7-10 kg. Twelve pigs were subjected to Sham injury (n = 5) by skin incision or TBI (n = 7) by controlled cortical impact. Blood samples were collected before the injury, then at approximately 5-day intervals until 30 days. Both groups also had DTI at 24 h and at 30 days after injury. Plasma samples were isolated and single molecule array (Simoa) was performed for glial fibrillary acidic protein (GFAP) and neurofilament light (NFL) levels. Afterwards, brain tissue samples were stained for ß-APP. DTI showed fractional anisotropy (FA) decrease in the right corona radiata (ipsilateral to injury), contralateral corona radiata, and anterior corpus callosum at 1 day. At 30 days, ipsilateral corona radiata showed decreased FA. Pigs with TBI also had increase in GFAP and NFL at 1-5 days after injury. Significant difference between Sham and TBI animals continued up to 20 days. Linear regression showed significant negative correlation between ipsilateral corona radiata FA and both NFL and GFAP levels at 1 day. To further validate the degree of axonal injury found in DTI, ß-APP immunohistochemistry was performed on a perilesional tissue as well as corona radiata bilaterally. Variable degree of staining was found in ipsilateral corona radiata. Porcine model of TBI replicates the acute increase in plasma biomarkers seen in clinical TBI. Further, long term white matter injury is confirmed in the areas such as the splenium and corona radiata. However, future study stratifying severe and mild TBI, as well as comparison with other subtypes of TBI such as diffuse axonal injury, may be warranted.


Assuntos
Lesões Encefálicas Traumáticas , Imagem de Tensor de Difusão , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Proteína Glial Fibrilar Ácida , Filamentos Intermediários , Suínos
18.
BMC Genomics ; 23(1): 266, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387592

RESUMO

Microtubule associated proteins (MAPs), defined as proteins that bind microtubules but are not molecular motors or severing enzymes, play a key role in regulating microtubule stability in neurons. Existing studies of the evolutionary relationships between these proteins are limited to genomic data from a small number of species. We therefore used a large collection of publicly available reference-quality eukaryotic proteomes to carry out a phylogenetic analysis of microtubule associated proteins in both vertebrates and invertebrates. Complete or near-complete reference quality proteomes were obtained from Uniprot. Microtubule associated proteins were identified using InterProtScan, aligned using MUSCLE and then phylogenetic trees constructed using the WAG algorithm. We identified 889 proteins with tubulin binding domains, of which 663 were in eukaryotes, including 168 vertebrates and 64 invertebrates. The vertebrate proteins separated into three families, resembling human MAP 2, MAP4 and MAPT, respectively, while invertebrate MAPs clustered separately. We found significant variation in number of microtubule associated proteins and number of microtubule binding domains between taxa, with fish and mollusks having an unexpectedly high number of MAPs and binding domains, respectively. Our findings represent a novel analysis of the evolution of microtubule associated proteins based on publicly available proteomics data sets. We were able to confirm the phylogeny of MAPs identified based on more limited genomic analyses, and in addition, derived several novel insights on the structure and function of MAPs.


Assuntos
Proteoma , Proteômica , Animais , Humanos , Invertebrados , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/metabolismo , Filogenia , Proteoma/metabolismo , Tubulina (Proteína)/genética , Vertebrados , Proteínas tau
19.
Acta Neuropathol ; 143(1): 33-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719765

RESUMO

Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-ß (Aß) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aß toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.


Assuntos
Proteínas de Homeodomínio/genética , Tauopatias/genética , Tauopatias/patologia , Proteínas Supressoras de Tumor/genética , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Animais , Estudos de Coortes , Drosophila , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
20.
RNA Biol ; 19(1): 104-116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34965173

RESUMO

Alternative splicing in Tau exon 10 generates 3 R- and 4 R-Tau proteoforms, which have equal abundance in healthy adult human brain. Aberrant alternative splicing in Tau exon 10 leads to distortion of the balanced 3 R- and 4 R-Tau expression levels, which is a causal factor to trigger toxic Tau aggregation, neuron dysfunction and patient death in a group of neurodegenerative diseases known as tauopathies. Hence, identification of regulators upstream of the Tau exon 10 splicing events are crucial to understanding pathogenic mechanisms driving tauopathies. In this study, we used RNA Antisense Purification with Mass Spectrometry (RAP-MS) analysis to identify RNA-binding proteins (RBPs) that interact with the Tau pre-mRNA near exon 10. Among the newly identified RBP candidates, we show that knockdown of hnRNPC induces Tau exon 10 skipping whereas overexpression of hnRNPC promotes Tau exon 10 inclusion. In addition, we show that hnRNPC interacts with the poly-uridine (U-tract) sequences in introns 9 and 10 of Tau pre-mRNA. Mutation of these U-tract motifs abolished binding of hnRNPC with Tau pre-mRNA fragment and blocked its impact on Tau exon 10 inclusion. These findings indicate that hnRNPC binds and utilizes these U-tract motifs located in introns 9 and 10 of Tau pre-mRNA to promote Tau exon 10 inclusion. Intriguingly, high hnRNPC expression level is associated with progressive supranuclear palsy (PSP), a sporadic tauopathy with pathological accumulation of Tau species that contain exon 10, which suggests a putative therapeutic role of hnRNPC for PSP treatment. [Figure: see text].


Assuntos
Processamento Alternativo , Éxons , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas tau/genética , Linhagem Celular , Cromatografia Líquida , Técnicas de Silenciamento de Genes , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/isolamento & purificação , Humanos , Espectrometria de Massas , Plasmídeos/genética , Precursores de RNA/genética , Fatores de Processamento de RNA/isolamento & purificação , RNA Antissenso , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA